

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Removal of Boron from Wastewater of Geothermal Power Plant by Selective Ion-Exchange Resins. I. Batch Sorption-Elution Studies

Mebrure Badruk^a; Nalan Kabay^b; Mustafa Demircioglu^b; Hasan Mordogan^c; Uner Ipekoglu^c

^a MTA (MINERAL RESEARCH AND EXPLORATION INSTITUTE), IZMIR, TURKEY ^b DEPARTMENT OF CHEMICAL ENGINEERING, FACULTY OF ENGINEERING, EGE UNIVERSITY, IZMIR, TURKEY ^c DEPARTMENT OF MINING ENGINEERING, FACULTY OF ENGINEERING, DOKUZ EYLUL UNIVERSITY, IZMIR, TURKEY

Online publication date: 15 September 1999

To cite this Article Badruk, Mebrure , Kabay, Nalan , Demircioglu, Mustafa , Mordogan, Hasan and Ipekoglu, Uner(1999) 'Removal of Boron from Wastewater of Geothermal Power Plant by Selective Ion-Exchange Resins. I. Batch Sorption-Elution Studies', *Separation Science and Technology*, 34: 13, 2553 – 2569

To link to this Article: DOI: 10.1081/SS-100100790

URL: <http://dx.doi.org/10.1081/SS-100100790>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Removal of Boron from Wastewater of Geothermal Power Plant by Selective Ion-Exchange Resins. I. Batch Sorption–Elution Studies

MEBRURE BADRUK

MTA (MINERAL RESEARCH AND EXPLORATION INSTITUTE)
AEGEAN REGION MANAGEMENT
IZMIR, TURKEY

NALAN KABAY* and MUSTAFA DEMIRCIOGLU

DEPARTMENT OF CHEMICAL ENGINEERING
FACULTY OF ENGINEERING
EGE UNIVERSITY
BORNOVA, IZMIR, 35100 TURKEY

HASAN MORDOGAN and UNER IPEKOGLU

DEPARTMENT OF MINING ENGINEERING
FACULTY OF ENGINEERING
DOKUZ EYLUL UNIVERSITY
BORNOVA, IZMIR, 35100 TURKEY

ABSTRACT

Boron removal was studied using *N*-glucamine-type resins Diaion CRB 02 and Purolite S 108. The resin Diaion CRB 02 exhibited a higher sorption capacity for boron removal from 0.01 M H_3BO_3 solution than did Purolite S 108. The presence of calcium, sodium, and chloride ions did not make a large interference on boron removal by both Diaion CRB 02 and Purolite S 108 resins. The sorption behavior of these two chelating resins obeyed the Langmuir isotherm model. Kinetic tests were performed to find the mass transfer mechanism of the sorption process of boron by Diaion CRB 02 resin. Five kinetic models were applied to fit the kinetic data obtained by using glucamine type-resin Diaion CRB 02. The results showed that the rate-determining step is particle diffusion for boron removal by Diaion CRB 02. The quantitative stripping of boron from both chelating resins was obtained with either 0.05 M

* To whom correspondence should be addressed. FAX: +90-232-3887600.

H_2SO_4 or 0.1 M HCl solutions. Boron in wastewater of the Kizildere geothermal field was effectively removed by both Diaion CRB 02 and Purolite S 108 resins. Preliminary column tests showed that Diaion CRB 02 is a potential resin for column removal of boron from wastewater of a geothermal power plant.

Key Words. Boron; Ion exchange; Boron selective chelating resins; Water pollution; Water treatment; Geothermal wastewater

INTRODUCTION

Boron is found in the earth's crust at an average concentration of about 10 mg/dm³ (1). Continental boron deposits of the Cenozoic age supply more than 90% of the world's demand for boron compounds. Borate minerals from pre-Cenozoic marine evaporates and metamorphic rock complexes account for the balance of world production. Borate production in the United States in 1992, all from Cenozoic deposits, was 1,009,000 metric tons of ore containing 554 metric tons of B_2O_3 , worth \$339 million. This represented 39% of world production. In that year Turkey accounted for 38% of the world production, while Argentine, Chile, Bolivia, and Peru together accounted for a total of 8% (2). The very large borax deposit at Kirka, Turkey is associated with at least 10 other borate minerals, which include species containing Ca, Mg, and Sr in addition to Na (3).

The main boron-bearing end products in the industry are insulation- and textile-grade fiber, borosilicate glass, fire retardants, enamels, glazes, and agricultural products (2). Boron is needed for plant growth but in relatively small amounts; however, and if present in a larger amount than is needed, it becomes toxic (4). For some crops, if 0.2 mg/dm³ boron in water is essential, 1–2 mg/dm³ may be toxic. Surface water rarely contains enough boron to be toxic, but well-water or springs occasionally contain toxic amounts, especially near geothermal areas and earthquake faults. Boron problems originating from water are probably more frequent than those originating in soil. Boron toxicity can affect nearly all crops but, like salinity, there is a wide range of tolerance among crops (5, 6). Boron contamination of water is a serious environmental problem which lacks a cost-effective solution. In dilute aqueous solutions, boron exists as boric acid $[B(OH)_3]$ or borate ion $[B(OH)_4^-]$ depending upon solution pH.

There are several methods suggested for boron removal from aqueous solutions. Among those methods, the ion-exchange process is most extensively used. It is well known that chelating resins containing functional groups in which hydroxyl groups are in the *cis* position show high selectivity for boron

removal through the formation of borate-diol complexes (7–12). It was explained in the literature that boron selective resins containing D-glucityl-amino groups have been prepared by the reaction of beads of chloromethylated crosslinked copolymers of styrene–divinylbenzene with 1-amino-1-deoxy-D-glucitol; 1-deoxy-1-(methylamino)-D-glucitol, 1,1-iminobis-(1-deoxy-D-glucitol), and 1,4-piperazinedylbis(1-deoxyl-D-glucitol) (13). The chelating resin Wofatit MK 51 was found to be effective to separate boric acid from brine containing alkali and alkaline earth salts in considerable concentration (11). Removal of boron from natural gas brines was studied by commercially available chelating resins containing *N*-methyl(polyhydroxyhexyl) amino groups. The resins used were Amberlite IRA 743, Diaion CRB 02, Duolite ES 371, and Uniselec UR 3500 (8). Macroporous chelating resins containing polyol groups (RGB) were prepared by the reaction of glicidyl methacrylate beads with 2-amino-2-hydroxyl methyl-1,3-propanediol, and the behavior of the resulting RGB in the uptake of boric acid was studied by Maeda et al. (14). The RGB exhibited high affinity for boric acid from geothermal power waste solutions. Ooi et al. recently reported the screening results of various adsorbents for boron removal from brine (15). Among the adsorbents, some hydrous oxide of tetravalent metals ($\text{CeO}_2 \cdot n\text{H}_2\text{O}$, $\text{ZrO}_2 \cdot n\text{H}_2\text{O}$, $\text{HfO}_2 \cdot n\text{H}_2\text{O}$) or pentavalent metals ($\text{Ta}_2\text{O}_5 \cdot n\text{H}_2\text{O}$) showed a good adsorption property for boron. A boron sorption study was also performed with a glucamine-type resin (Diaion CRB 02) by using the residual brine after salt production from seawater (15).

A process combining adsorption and solvent extraction was also reported in the literature for the treatment of large quantities of water-containing boron (16). Recently, an extraction system for the recovery of boric acid from wastewater using 2-butyl-2-ethyl-1,3-propanediol (BEDP) as an extractant was studied by Matsumoto et al. (17).

The Denizli-Kizildere geothermal field is the first geothermal field suitable for electricity production in Turkey. Water is disposed of from the power plant at a flow rate of 1500 tons/hour and contains boron of approximately 30 mg/dm³. The level of boron is very high if this water is to be used for irrigation in agricultural areas. According to the literature, the average level of boron permitted in irrigation water is generally 1 mg/dm³. Recepoglu and Peker investigated boron removal from Kizildere geothermal wastewater using Amberlite IRA 743 (18).

In this study, batch sorption and preliminary column tests were performed using *N*-glucamine-type resins Diaion CRB 02 and Purolite S 108 for boron removal from wastewater of the Kizildere-Turkey geothermal field. The optimum conditions for batch sorption of boron were obtained.

EXPERIMENTAL

Kizildere-Turkey Geothermal Power Plant Wastewater

Kizildere geothermal wastewater (pH 9.30) is disposed of from the power plant at a flow rate of 1500 tons/h and contains approximately 30 mg/dm³ boron. The concentrations (in mg/dm³) of other ionic species in the wastewater are: K = 145; Na = 1300; NH₄ = 3.5; Ca = 0.39; Mg = 0.08; Fe (total) = <0.05; As (total) = 0.58; Li = 4.8; Al = 0.71; SiO₂ = 415; Cl = 134; I = 4.6; F = 15; Br = 0.53; NO₂ = 0.01; NO₃ = <1; HCO₃ = 1037; CO₃ = 780; and SO₄ = 695.

Chelating Ion-Exchange Resins

N-Glucamine-type resin Diaion CRB 02 was kindly supplied by Mitsubishi Chem., Japan and the resin Purolite S 108 by Purolite International Ltd., UK. The properties of these resins are given in Tables 1 and 2, respectively.

TABLE 1
Characteristics of Diaion CRB 02

Constitutional type	Highly porous type
Ion form as shipped	OH form
Shipping density (g/dm ³) (approx.)	635
Moisture content (%)	50–60
Exchange capacity	Acid 0.6 meq/cm ³ (min.)
Screen grading	1180–300 µm (through 300 µm, max. 1%)
Effective size (mm)	0.35–0.55
Uniformity coefficient (max.)	1.6
Operating temperature (°C) (max.)	100°C max. (OH form)
Effective pH range	6–10
Uses	Boric acid selective adsorption
Specific surface area (m ² /g)	27
Structure:	

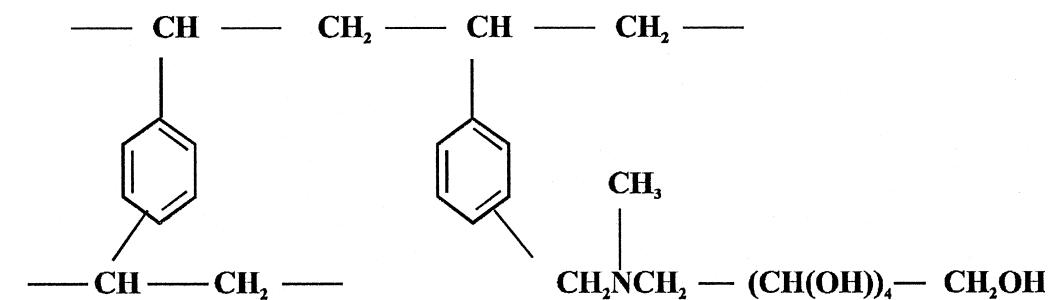
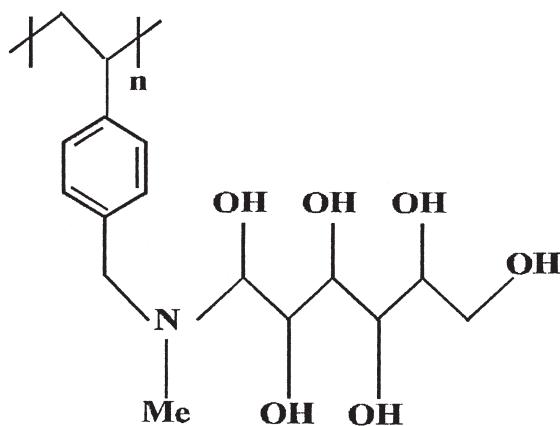



TABLE 2
Characteristics of Purolite S 108

Polymer matrix structure	Macroporous styrene–divinylbenzene
Physical form and appearance	Opaque cream spheres
Whole bead count	>95%
Ionic form (as shipped)	Cl^-
Shipping density, g/dm ³ (lb/ft)	650 (41)
Screen size range:	
British Standard Screen	16–52 mesh, wet
US Standard Screen	18–50 mesh, wet
Moisture retention, Cl^- form	52–58%
Reversible swelling (Fe \rightarrow Cl)	<6%
Specific gravity, moist Cl^- form	1.06
Boron-exchange capacity, Cl^- form (wet, volumetric)	0.35 eq/L
Maximum operating temperature, Cl^- /borate forms	60°C (140°F)
Operating pH range	1–13
Specific surface area (m ² /g)	17.1
Structure:	

Batch Sorption of Boron

Resin (0.25 g) was contacted with 50 cm³ of 0.01 M H₃BO₃ solution at 30°C for 48 hours with continuous shaking. The boron concentration in the supernatant was determined spectrophotometrically using the Carmine Method. The sorption of boron from Kizildere geothermal wastewater was performed by immersing 0.25 g resin into 50 cm³ of wastewater and shaking the mixture at 30°C for 48 hours. Kinetic tests were carried out by contacting 2.5 g resin with 500 cm³ of 0.01 M H₃BO₃ solution at 30°C on a magnetic stirrer placed under a water bath. The concentration of boron was monitored after 5, 10, 15, 20, 30 minutes and 1, 2, 4, 6, and 24 hours by taking 2 cm³ of supernatant from the solution. For adsorption isotherm study, 0.25 g of resin was contacted with

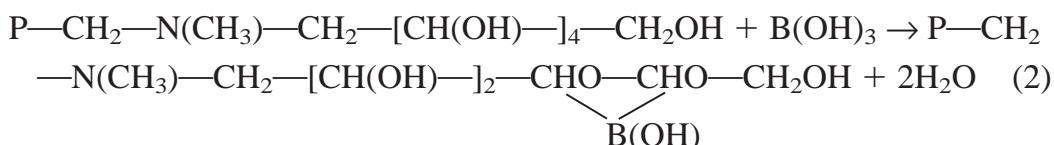
50 cm³ of H₃BO₃ solution at concentrations of 50, 100, 250, 500, and 1000 mg/dm³ at 30°C for 24 hours with continuous shaking.

Batch Elution of Boron

Resin (0.25 g) was contacted with 50 cm³ of 0.01 M H₃BO₃ solution at 30°C for 48 hours with continuous shaking. Then the boron sorbed onto the resin was eluted using either HCl or H₂SO₄ (25 cm³) solution at different concentrations by immersing the resin into the acid solution and shaking the mixture at 30°C for 2 hours.

Column Sorption-Elution of Boron

The resin Diaion CRB 02 in the 0.355–0.500 mm (3 cm³) particle size range was packed into a glass column of internal diameter 0.7 cm. A solution of H₃BO₃ (600 cm³) containing boron at a concentration of about 31.83 mg/dm³ was delivered by downflow to the column at a flow rate (SV) of 25 bed volumes per hour using a peristaltic pump (Atto SJ 1211 H). The breakthrough curve was obtained by the analysis of successive 6 cm³ of fractions of the effluent using a fraction collector (Advantec SF 2120 Model). The column elution was carried out using 0.25 M H₂SO₄ solution at SV 5 h⁻¹. The elution profile analysis was performed by collecting 3 cm³ fractions of the eluate.


RESULTS AND DISCUSSION

Removal of Boron by Chelating Ion-Exchange Resins

Boric acid exists predominantly in water as the monomeric orthoboric acid, $\text{B}(\text{OH})_3$. Boric acid chemistry is dominated by the Lewis acid character of this compound, and virtually every reaction appears to occur by a mechanism in which the first step involves a “donor atom” bonding to boron. The reaction of boric acid with strong bases in aqueous solution has been shown to produce the $\text{B}(\text{OH})_4^-$ ion according to the following equilibrium reaction (4, 15):

In the present study boric acid selective *N*-glucamine-type resins Diaion CRB 02 and Purolite S 108 were used for batch sorption of boron from 0.01 M H_3BO_3 . The following chelation mechanism (Eq. 2) was given in the literature for boron sorption by glucamine-type resins (15):

where P = polymeric backbone.

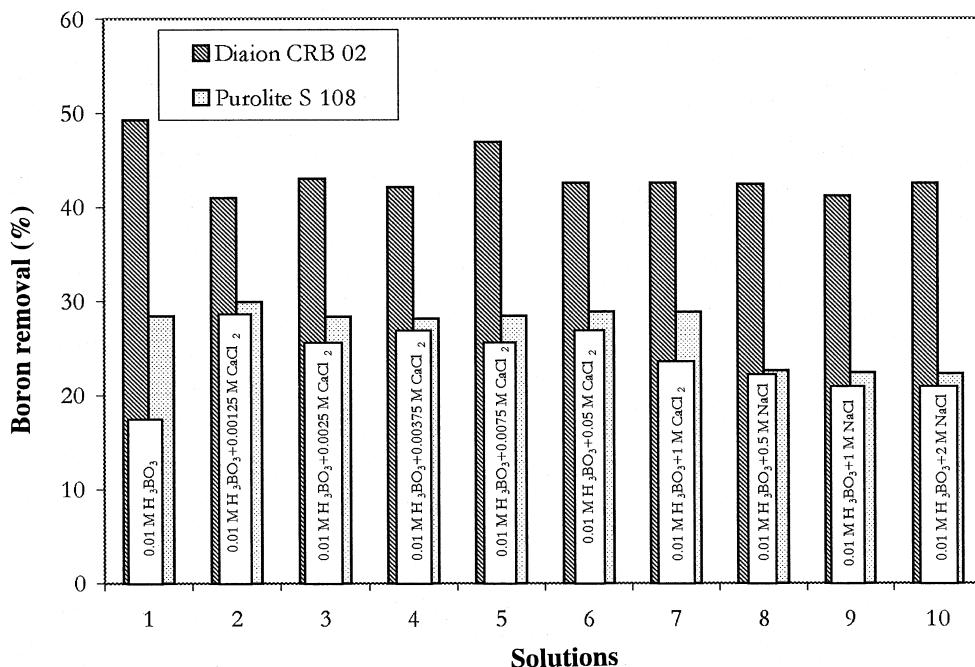


FIG. 1 Effect of Ca, Na, and Cl ions on batch sorption of boron from 0.01 M H_3BO_3 solution by chelating resins.

Boron removals by both chelating resins are shown in Fig. 1. *N*-Glucamine-type resin Diaion CRB 02 exhibited a higher sorption capacity for boron removal from 0.01 M H_3BO_3 than did Purolite S 108.

The major ionic components in wastewater of the Kizildere geothermal power plant are sodium, potassium, chloride, sulfate, bicarbonate, carbonate, and borate. Bearing in mind the existence of ionic impurities along with boron in wastewater, boron removal by chelating ion-exchange resins was examined in the presence of sodium chloride and calcium chloride. The results, given in Fig. 1, show some decrease was observed in the removal of boron by Diaion CRB 02 resin in the presence of Ca, Na, and Cl ions. However, the removal was not influenced by an increase in the concentrations of these foreign ions. In the case of Purolite S 108 resin, boron uptake remained the same in the presence of calcium chloride although a slight decrease appeared in the presence of sodium chloride (Fig. 1).

Effect of pH

In order to get some information about the relative performance of both Diaion CRB 02 and Purolite S 108 resins; the sorption of boron was investigated as a function of pH. The results are shown in Fig. 2. Boron removal by Diaion CRB 02 increased with an increase in pH. Between pH 5–6, boron uptake al-

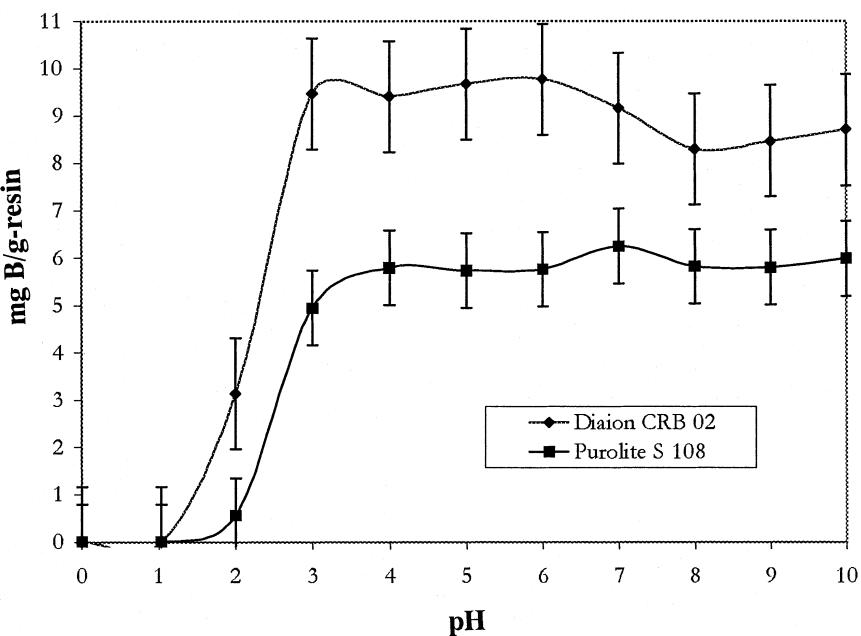


FIG. 2 Effect of pH on boron removal by Diaion CRB 02 and Purolite S 108.

most leveled off. Above pH 7, the uptake decreased slightly with increasing pH. This decrease was explained in the literature by the fact that boric acid itself exhibits acid dissociation ($pK_{a1} = 9.2$) (14). A similar behavior against pH was observed in the case of the resin Purolite S 108 although the decrease in boron removal at pH above 7 was not apparent (Fig. 2).

Adsorption Isotherms of Boron

The Langmuir equation (3) was applied for the adsorption equilibrium of both resins:

$$\frac{C_e}{Q_e} = \frac{1}{Q_0 b} + \frac{C_e}{Q_0} \quad (3)$$

where C_e is the equilibrium concentration (mg/dm^3), Q_e is the amount of boron adsorbed at equilibrium (mg/g), and Q_0 and b are Langmuir constants related to sorption capacity and energy of sorption, respectively. Linear plots of C_e/Q_e versus C_e show that sorption obeys the Langmuir isotherm model for both Diaion CRB 02 and Purolite S 108 as shown in Figs. 3 and 4. The essential characteristics of a Langmuir isotherm can be expressed in terms of a dimensionless constant separation factor, R_L , which describes the type of the isotherm and is defined by

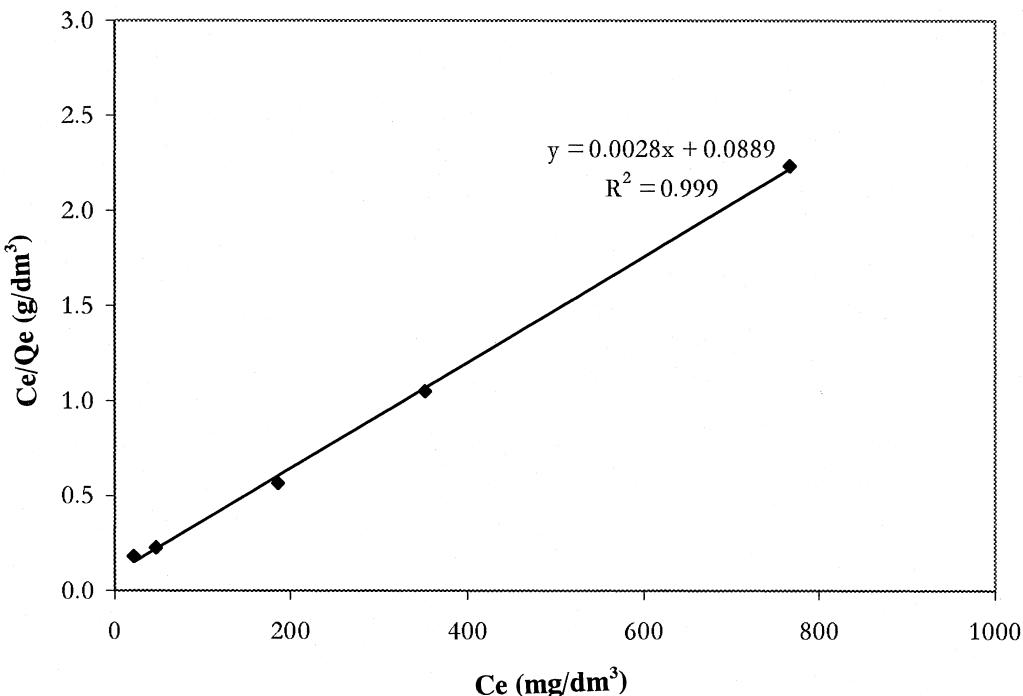


FIG. 3 Langmuir plot of boron sorption by Diaion CRB 02.

$$R_L = \frac{1}{1 + bC_0} \quad (4)$$

where b is the Langmuir constant and C_0 is the initial concentration of boron (19, 20). The values of R_L calculated were between 0 and 1, indicating favorable sorption of boron by both Diaion CRB 02 and Purolite S 108 resins.

Kinetic Study

The kinetic behavior of Diaion CRB 02 (0.710–0.500 mm) was examined in order to get a measure of the relative performance of the resin. For this, boron removal was monitored with time. The results are plotted in Fig. 5. The initial rate of boron sorption was rapid for *N*-glucamine-type resin Diaion CRB 02 as shown.

The ion exchange between the counter ion (in solution) and the exchangeable ion (on the resin) is well described by a heterogeneous process. The models for process dynamics cover both the diffusional steps (bulk solution, a film layer at the external surface of the particle, pores) and the exchange reaction on the active sites (21). Since the resistance in bulk solution is easily controlled and negligible, three resistance, such as film diffusion, particle diffu-

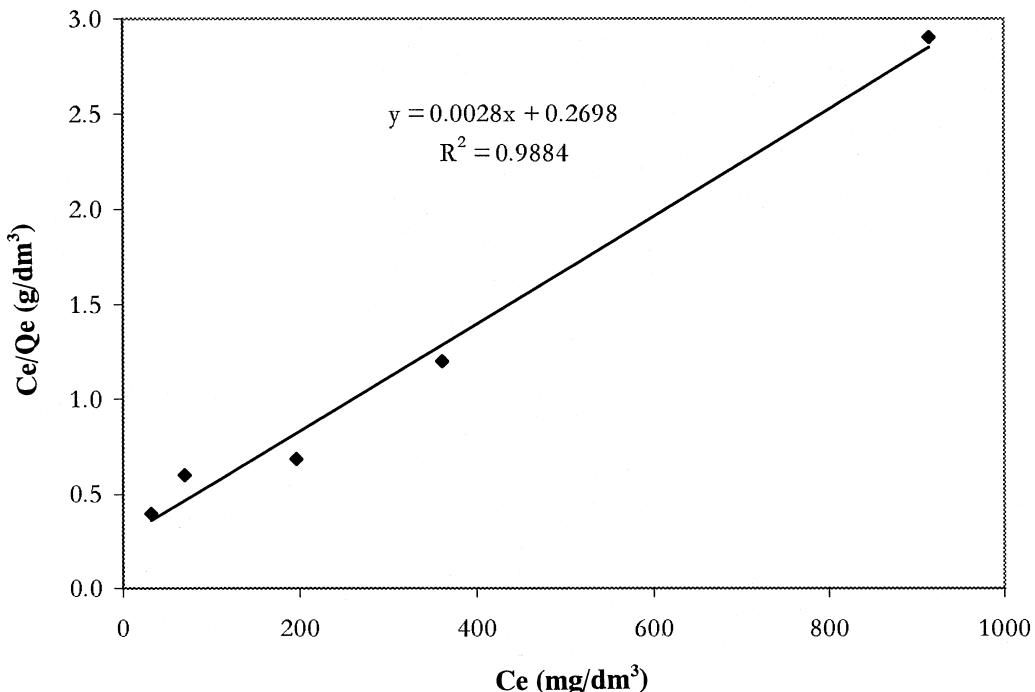


FIG. 4 Langmuir plot of boron sorption by Purolite S 108.

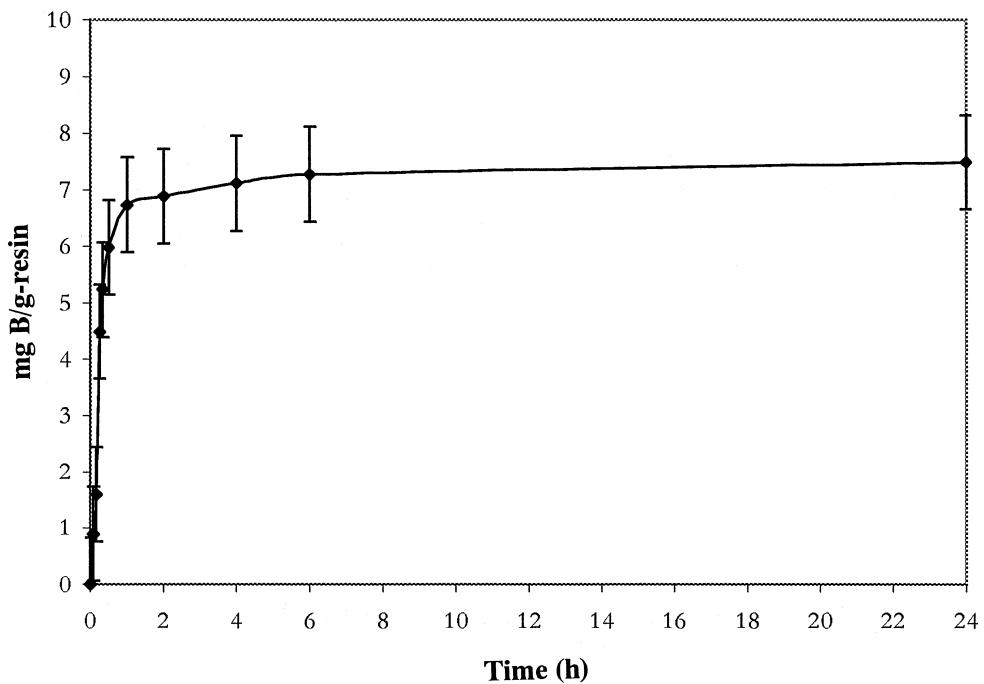


FIG. 5 Kinetic curve of boron removal by Diaion CRB 02 (0.710–0.500 mm)

sion, and chemical reaction, usually determine the overall rate of the ion-exchange process. One approach to the kinetic study is based on Fick's first law of integration of material balance for infinite solution volume (ISV) (22), whereas the other method uses the unreacted core model (UCM) in which ion exchange is treated as a heterogeneous reaction first occurs at the outer skin of the particle, then within a zone moving into the particle through the unreacted core (23). Five kinetic models developed for spherical particles in different cases of the rate-determining steps are given in Table 3 (24, 25). These models were applied to fit the kinetic data of the resin Diaion CRB 02 (0.710–0.500 mm). Figures 6 and 7 show the functions of these kinetic models versus time. On these charts, markers are obtained by substitution of experimental values of X into model equations, whereas lines are drawn by the least-square methods on corresponding model equations. Since the resin Diaion CRB 02 reached equilibrium after about 1 hour, the data obtained at contact times larger than 1 hour were neglected in this application of kinetic models. The governing equation, i.e., the rate-controlling step, among the five kinetic models is determined statistically by least-square analysis of linearized model equations. The model having good statistics shows the rate-determining step of the heterogeneous ion-exchange process. In the case of several models with acceptable statistics, the overall rate is controlled by the partial contributions of these steps. Table 4 gives the slope values and linear correlation coefficients. In order to determine the statistically meaningful set of data with seven degrees of freedom and at the 99% confidence level, the r minimum is 0.798. Hence, the particle diffusion model is the best kinetic model to describe the ion-exchange processes. As seen in Table 4, the maximum of the correlation coefficients for the linear models shows that the reaction is particle diffusion controlled.

Batch Elution of Boron

A chelating resin will be of real value if the sorbed species are removed from the resin quantitatively and the resin can be recycled many times after a

TABLE 3
Diffusional and Reaction Models

Method	Equation	Rate-determining step
ISV	$-\ln(1 - X^2) = kt$, where $k = D_r \pi^2 / r_0^2$	Particle diffusion
ISV	$-\ln(1 - X) = K_{1i}t$, where $K_{1i} = 3DC/r_0\delta C_r$	Film diffusion
UCM	$X = (3C_{A0}K_{mA}/ar_0C_{s0})t$	Liquid film
UCM	$3 - 3(1 - X)^{2/3} - 2X = (6D_{eR}C_{A0}/ar_0^2C_{s0})t$	Reacted layer
UCM	$1 - (1 - X)^{1/3} = (k_s C_{A0}/ar_0 C_{s0})t$	Chemical reaction

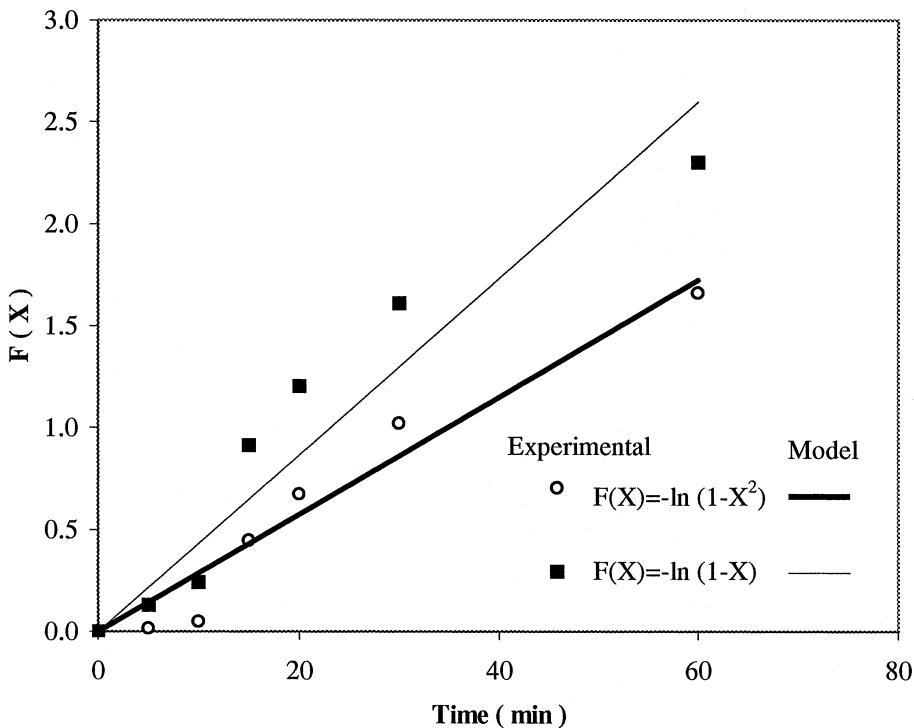


FIG. 6 Kinetic behavior of Diaion CRB 02 (0.710–0.500 mm) based on infinite solution volume models.

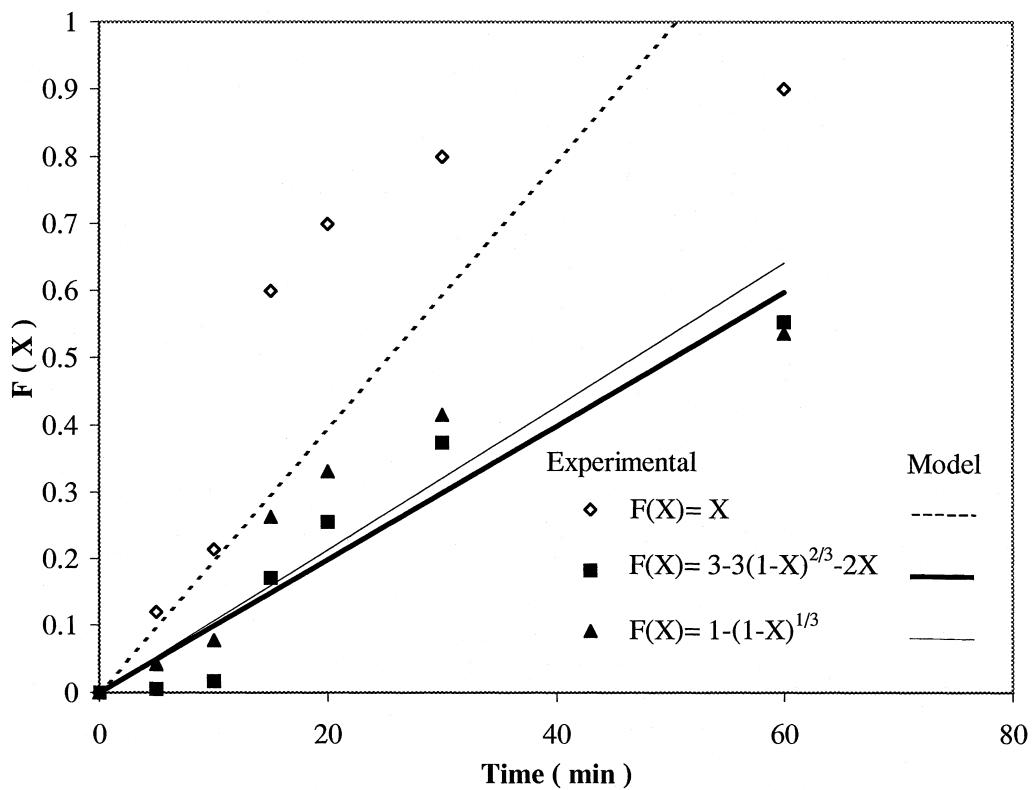


FIG. 7 Kinetic behavior of Diaion CRB 02 (0.710–0.500 mm) based on unreacted core models.

TABLE 4
Evaluation of Kinetic Models for Diaion CRB 02
(0.710–0.500 mm)

Model	Slope	r^2
$-\ln(1 - X)$	0.0433	0.9062
$-\ln(1 - X^2)$	0.0287	0.9511
X	0.0198	0.5987
$3 - 3(1 - X)^{2/3} - 2X$	0.01	0.9260
$1 - (1 - X)^{1/3}$	0.0107	0.8194

regeneration process. In order to obtain good elution efficiency, acid eluants such as H_2SO_4 and HCl at various concentrations were used for stripping boron from both Diaion CRB 02 and Purolite S 108. The results are given in Table 5. A quantitative stripping for boron was obtained with a H_2SO_4 concentration as low as 0.05 M and with 0.1 M HCl. The column elution behavior of resins with acid eluants will be published elsewhere.

Removal of Boron from Kizildere Geothermal Field Wastewater

According to the spectrophotometric analysis results, the boron content of Kizildere geothermal field wastewater was found to be about 30 mg/dm³. The resins Diaion CRB 02 and Purolite S 108 were used for boron removal from this geothermal wastewater. As summarized in Table 6, both resins gave quantitative batch removal of boron.

A preliminary column test was carried out to determine the column performance of the resin Diaion CRB 02 for removal of boron. An aqueous feed solution containing a boron concentration of 31.83 mg/dm³ (pH 5.6) was deliv-

TABLE 5
Batch Stripping of Boron from Chelating Resins

Stripping agent	Stripping (%)		
	Diaion CRB 02	Purolite S 108	
H_2SO_4	0.05 M	100	100
	0.25 M	100	100
	0.5 M	100	100
HCl	0.1 M	92	94
	0.5 M	95	96
	1 M	97	96

TABLE 6
Removal of Boron from
Kizildere Geothermal Plant Wastewater

Resin	Removal of boron	
	%	mg B/g-resin
Diaion CRB 02	98.1	6.69

ered to the column at $SV\ 25\ h^{-1}$. The resulting breakthrough curve is shown in Fig. 8. The boron concentration in the effluent was less than $1\ mg/dm^3$ up to 96 bed volumes. The resin was exhausted at 160 bed volumes. The breakthrough capacity was found to be $3.1\ mg\ B/cm^3$ of resin, and the total capacity was $4.2\ mg\ B/cm^3$ of resin. These results show that resin Diaion CRB 02 is promising for column removal of boron from Kizildere geothermal plant wastewater. The loaded column was eluted with $0.25\ M\ H_2SO_4$. The elution profile of the resin is shown in Fig. 9. The elution efficiency of boron was 80% up to 5 bed volumes of the eluate. The boron concentration of the eluate reached $2.0\ g/dm^3$, nearly 63 times higher than that of the feed solution.

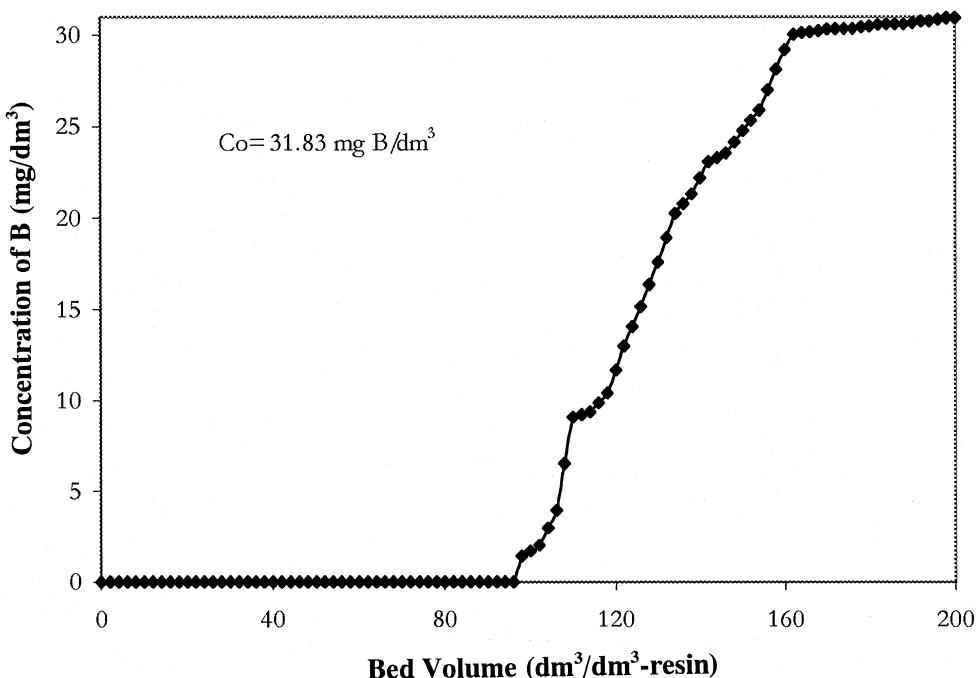


FIG. 8 Breakthrough curve of boron.

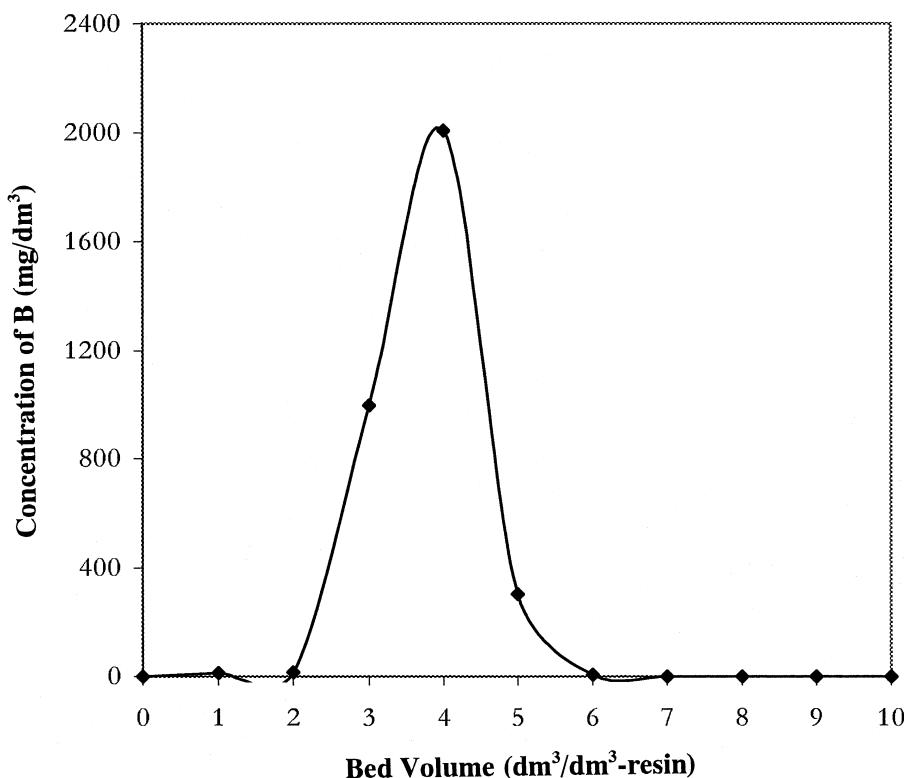


FIG. 9 Elution profile of boron.

CONCLUSIONS

The Kizildere geothermal power plant wastewater contains approximately 30 mg B/dm³. In order to utilize this water for irrigation, the maximum content of boron should be reduced below 1 mg/dm³. Chelating ion-exchange resins Diaion CRB 02 and Purolite S 108 performed a quantitative removal of boron from wastewater in the Kizildere geothermal field. The results of column sorption/elution studies for boron removal from Kizildere geothermal field wastewater using the same chelating ion-exchange resins and their recycle use will be published separately as a continuation of the present work.

NOTATION

$Q_{1,1}$	equilibrium quotient
X	fractional attainment of equilibrium or extent of resin conversion
k	rate constant (L/s)
t	time(s)
D_r	diffusion coefficient in solid phase (m ² /s)
r_0	average particle radius (mm)

K_{li}	rate constant for film diffusion (infinite solution volume condition) (L/s)
D	diffusion coefficient in solution phase (m ² /s)
δ	film thickness (mm)
C	total concentration of both exchanging species (M)
C_{A0}	concentration of Species A in bulk solution (M)
K_{mA}	mass transfer coefficient of Species A through the liquid film (m/s)
a	stoichiometric coefficient
C_{S0}	concentration of solid reactant at the bead's unreacted core (M)
D_{eR}	effective diffusion coefficient in solid phase (m ² /s)
C_{A0}	concentration of Species A in bulk solution (M)
k_s	reaction constant based on surface (m/s)

ACKNOWLEDGMENT

The experimental work reported here was performed at Avicenne-Project Laboratory of Chemical Engineering Department, Ege University. Thanks are due to Mitsubishi Chemical Co. (Yokohama, Japan), Purolite International Ltd. (Milan, Italy and Pontyclun, UK), and Sel Dis Ticaret (Istanbul, Turkey) for the kind supply of the resin samples.

We express our sincere gratitude to Dr. M. Yildiz, Manager of MTA-Aegean region for his kind support, and to Dr. K. Ooi, Shikoku National Industrial Research Institute, Japan, for his valuable discussion and provision of some literature on the subject research. The authors gratefully acknowledge the assistance of Mr. M. Akcay, Mr. M. E. Solak, Ms. S. Yayli, and Ms. N. Kocacik during the experimental work and calculations.

In addition, helpful comments and suggestions from the reviewers are gratefully acknowledged.

REFERENCES

1. R. A. Smith, "Boron Compounds" in *Ullmann's Encyclopedia of Industrial Chemistry*, 5th ed. (F. T. Chambell, R. Pfefferkorn, and J. F. Rounsville, Eds.), 1958, pp. 263–330.
2. G. I. Smith and M. D. Medrano, "Continental Borate Deposits of Cenozoic Age," in *Reviews in Mineralogy* (Vol. 33)—*Boron—Mineralogy, Petrology and Geochemistry* (E. S. Grew and L. M. Awitz, Eds.), Mineralogical Society of America, Washington, DC, 1996.
3. C. Helvaci, "A Review of the Mineralogy of the Turkish Borate Deposits," *Mercian Geol.*, 6, 257 (1978).
4. R. M. Adams, *Boron, Metallo-Boron Compounds and Boranes*, Wiley, New York, NY, 1964.
5. R. S. Ayers, *Water Quality for Agriculture* (Report on FAO Irrigation and Drainage, M-56 ISBN, 92-5-102263-1), Rome, 1994.
6. K. Poslu and A. W. L. Dudeney, *Hydrometallurgy*, 10, 47 (1983).
7. R. Kunin and A. F. Preuss, *Ind. Eng. Chem., Prod. Res. Dev.*, 3, 304 (1964).
8. S. Yasuda and H. Yamauchi, *Nippon Kagaku Kaishi*, p. 752 (1987).

9. U. Schide and E. Uhlemann, *Reactive Polym.*, 18, 155 (1992).
10. U. Schide and E. Uhlemann, *Ibid.*, 20, 181 (1993).
11. U. Schide and E. Uhlemann, *Int. J. Miner. Process.*, 32, 295 (1991).
12. S. Yasuda, Y. Inukai, and H. Ohba, *Bunseki Kagaku*, 42, 713 (1993).
13. C. L. Mehlretter, F. B. Wekly, and C. A. Wilham, *Ind. Eng. Chem. Prod. Res. Dev.*, 3(4), 145 (1964).
14. H. Maeda, H. Egawa, and A. Jyo, *Sep. Sci. Technol.*, 30(18), 3545 (1995).
15. K. Ooi, H. Katoh, A. Sonoda, and T. Hirotsu, *J. Ion Exchange*, 7(3), 166 (1996).
16. T. Tsuboi, E. Kunugita, and I. Komasa, *J. Chem. Eng. Jpn.*, 23, 480 (1990).
17. M. Matsumoto, K. Kondo, M. Hirata, S. Kokubu, T. Hano, and T. Takada, *Sep. Sci. Technol.*, 32(5), 983 (1997).
18. O. Recepoglu and U. Beker, *Geothermics*, 20, 83 (1991).
19. T. W. Weber and R. K. Chakrabarti, *AIChE J.*, 20, 228 (1974).
20. G. McKay, H. S. Blair, and R. J. Gardner, *J. Appl. Polym. Sci.*, 27, 3043 (1982).
21. J. W. Weber, *Physicochemical Processes for Water Quality Control*, Wiley, New York, NY, 1972.
22. F. Helfferich, *Ion Exchange*, McGraw-Hill, New York, NY, 1962.
23. O. Levenspiel, *Chemical Reaction Engineering*, Wiley, New York, NY, 1972.
24. J. L. Cortina, N. Miralles, and M. Aguilar, *Proceedings of the IEX'96*, Cambridge, UK, 1996, p. 396.
25. D. Petruzzelli, *Seminar Notes on "Latest Achievements and Applications in Ion Exchange Kinetics,"* YTU, Istanbul, 1998.

Received by editor June 19, 1998

First revision received October 1998

Second revision received November 1998

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SS100100790>